top of page
Search
HAIV

ComputationOfLearning

Updated: Aug 17, 2020

学习问题的计算复杂度


PAC那一篇中,我们提到VC维只对样本复杂度有刻画,但没有对计算复杂度作描述。在这一篇中,我们探讨有效的可能近似正确的学习(Efficient PAC Learning),就是不仅可学习,而且能有效学习。换句话,我们尝试回答什么时候可以有效学习?什么时候可以有效优化?

其中的关键点是多项式运行时(polynomial runtime),这还是与样本数目有关。这个定义的真正要求是“polynomial in the size of the problem“。 因而,我们可以给出一个近似等同的定义:

达成有效学习是有条件的,达成恰当的有效学习(Proper efficient PAC learning)是很难的,限于通俗度的考量这里不做展开。


19 views0 comments

Recent Posts

See All

Random Feature Fourier and Double descend

Prof. Zhenyu Liao from School of Electronic Information visited HAIV Lab and gave a talk on the double descend effect of training loss...

Random Features

On April 2, 2021, Dr. Fanghui Liu visited HUST and gave a talk at HAIV Lab on random feature Fourier for kernel approximation. He is...

MetaLearn

Comments


bottom of page